Telegram Group & Telegram Channel
🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1840
Create:
Last Update:

🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1840

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Machine learning Interview from it


Telegram Machine learning Interview
FROM USA